B.5.2 Recommended Layout Algorithms B6 Notes on Forms

Shares

If COL or COLGROUP elements are present, they specify the number of columns and the table may be rendered using a fixed layout. Otherwise the autolayout algorithm described below should be used.

If the width attribute is not specified, visual user agents should assume a default value of 100% for formatting.

It is recommended that user agents increase table widths beyond the value specified by width in cases when cell contents would otherwise overflow. User agents that override the specified width should do so within reason. User agents may elect to split words across lines to avoid the need for excessive horizontal scrolling or when such scrolling is impractical or undesired.

For the purposes of layout, user agents should consider that table captions (specified by the CAPTION element) behave like cells. Each caption is a cell that spans all of the table’s columns if at the top or bottom of the table, and rows if at the left or right side of the table.

Fixed Layout Algorithm

For this algorithm, it is assumed that the number of columns is known. The column widths by default should be set to the same size. Authors may override this by specifying relative or absolute column widths, using the COLGROUP or COL elements. The default table width is the space between the current left and right margins, but may be overridden by the width attribute on the TABLE element, or determined from absolute column widths. To deal with mixtures of absolute and relative column widths, the first step is to allocate space from the table width to columns with absolute widths. After this, the space remaining is divided up between the columns with relative widths.

The table syntax alone is insufficient to guarantee the consistency of attribute values. For instance, the number of COL and COLGROUP elements may be inconsistent with the number of columns implied by the table cells. A further problem occurs when the columns are too narrow to avoid overflow of cell contents. The width of the table as specified by the TABLE element or COL elements may result in overflow of cell contents. It is recommended that user agents attempt to recover gracefully from these situations, e.g., by hyphenating words and resorting to splitting words if hyphenation points are unknown.

In the event that an indivisible element causes cell overflow, the user agent may consider adjusting column widths and re-rendering the table. In the worst case, clipping may be considered if column width adjustments and/or scrollable cell content are not feasible. In any case, if cell content is split or clipped this should be indicated to the user in an appropriate manner.

Autolayout Algorithm

If the number of columns is not specified with COL and COLGROUP elements, then the user agent should use the following autolayout algorithm. It uses two passes through the table data and scales linearly with the size of the table.

In the first pass, line wrapping is disabled, and the user agent keeps track of the minimum and maximum width of each cell. The maximum width is given by the widest line. Since line wrap has been disabled, paragraphs are treated as long lines unless broken by BR elements. The minimum width is given by the widest text element (word, image, etc.) taking into account leading indents and list bullets, etc. In other words, it is necessary to determine the minimum width a cell would require in a window of its own before the cell begins to overflow. Allowing user agents to split words will minimize the need for horizontal scrolling or in the worst case, clipping the cell contents.

This process also applies to any nested tables occurring in cell content. The minimum and maximum widths for cells in nested tables are used to determine the minimum and maximum widths for these tables and hence for the parent table cell itself. The algorithm is linear with aggregate cell content, and broadly speaking, independent of the depth of nesting.

To cope with character alignment of cell contents, the algorithm keeps three running min/max totals for each column: Left of align char, right of align char and unaligned. The minimum width for a column is then: max(min_left + min_right, min_non-aligned).

The minimum and maximum cell widths are then used to determine the corresponding minimum and maximum widths for the columns. These in turn, are used to find the minimum and maximum width for the table. Note that cells can contain nested tables, but this doesn’t complicate the code significantly. The next step is to assign column widths according to the available space (i.e., the space between the current left and right margins).

For cells that span multiple columns, a simple approach consists of apportioning the min/max widths evenly to each of the constituent columns. A slightly more complex approach is to use the min/max widths of unspanned cells to weight how spanned widths are apportioned. Experiments suggest that a blend of the two approaches gives good results for a wide range of tables.

The table borders and intercell margins need to be included in assigning column widths. There are three cases:

  1. The minimum table width is equal to or wider than the available space. In this case, assign the minimum widths and allow the user to scroll horizontally. For conversion to braille, it will be necessary to replace the cells by references to notes containing their full content. By convention these appear before the table.
  2. The maximum table width fits within the available space. In this case, set the columns to their maximum widths.
  3. The maximum width of the table is greater than the available space, but the minimum table width is smaller. In this case, find the difference between the available space and the minimum table width, lets call it W. Lets also call D the difference between maximum and minimum width of the table.For each column, let d be the difference between maximum and minimum width of that column. Now set the column’s width to the minimum width plus d times W over D. This makes columns with large differences between minimum and maximum widths wider than columns with smaller differences.

This assignment step is then repeated for nested tables using the minimum and maximum widths derived for all such tables in the first pass. In this case, the width of the parent table cell plays the role of the current window size in the above description. This process is repeated recursively for all nested tables. The topmost table is then rendered using the assigned widths. Nested tables are subsequently rendered as part of the parent table’s cell contents.

If the table width is specified with the width attribute, the user agent attempts to set column widths to match. The width attribute is not binding if this results in columns having less than their minimum (i.e., indivisible) widths.

If relative widths are specified with the COL element, the algorithm is modified to increase column widths over the minimum width to meet the relative width constraints. The COL elements should be taken as hints only, so columns shouldn’t be set to less than their minimum width. Similarly, columns shouldn’t be made so wide that the table stretches well beyond the extent of the window. If a COL element specifies a relative width of zero, the column should always be set to its minimum width.

When using the two pass layout algorithm, the default alignment position in the absence of an explicit or inherited charoff attribute can be determined by choosing the position that would center lines for which the widths before and after the alignment character are at the maximum values for any of the lines in the column for which align="char". For incremental table layout the suggested default is charoff="50%". If several cells in different rows for the same column use character alignment, then by default, all such cells should line up, regardless of which character is used for alignment. Rules for handling objects too large for a column apply when the explicit or implied alignment results in a situation where the data exceeds the assigned width of the column.

Choice of attribute names. It would have been preferable to choose values for the frame attribute consistent with the rules attribute and the values used for alignment. For instance: none, top, bottom, topbot, left, right, leftright, all. Unfortunately, SGML requires enumerated attribute values to be unique for each element, independent of the attribute name. This causes immediate problems for “none”, “left”, “right” and “all”. The values for the frame attribute have been chosen to avoid clashes with the rules, align, and valign attributes. This provides a measure of future proofing, as it is anticipated that the frame and rules attributes will be added to other table elements in future revisions to this specification. An alternative would be to make frame a CDATA attribute. The consensus of the W3C HTML Working Group was that the benefits of being able to use SGML validation tools to check attributes based on enumerated values outweighs the need for consistent names.

B.6 Notes on forms

B.6.1 Incremental display

The incremental display of documents being received from the network gives rise to certain problems with respect to forms. User agents should prevent forms from being submitted until all of the form’s elements have been received.

The incremental display of documents raises some issues with respect to tabbing navigation. The heuristic of giving focus to the lowest valued tabindex in the document seems reasonable enough at first glance. However this implies having to wait until all of the document’s text is received, since until then, the lowest valued tabindex may still change. If the user hits the tab key before then, it is reasonable for user agents to move the focus to the lowest currently available tabindex.

If forms are associated with client-side scripts, there is further potential for problems. For instance, a script handler for a given field may refer to a field that doesn’t yet exist.

B.6.2 Future projects

This specification defines a set of elements and attributes powerful enough to fulfill the general need for producing forms. However there is still room for many possible improvements. For instance the following problems could be addressed in the future:

  • The range of form field types is too limited in comparison with modern user interfaces. For instance there is no provision for tabular data entry, sliders or multiple page layouts.
  • Servers cannot update the fields in a submitted form and instead have to send a complete HTML document causing screen flicker.
  • These also cause problems for speech based browsers, making it difficult for the visually impaired to interact with HTML forms.

Another possible extension would be to add the usemap attribute to INPUT for use as client-side image map when “type=image”. The AREA element corresponding to the location clicked would contribute the value to be passed to the server. To avoid the need to modify server scripts, it may be appropriate to extend AREA to provide x and y values for use with the INPUT element.